
The 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
21-23 September, 2017, Bucharest, Romania

Simulation of Large Neuronal Networks in Cloud
and Grid with Graphics Processing Units

Oleksandr O. Sudakov 1,2, Andrii I. Cherederchuk 1, Volodymyr L. Maistrenko 1
1 Scientific Center for Medical and Biotechnical Research, NAS of Ukraine, Volodymyrska Str. 54, 01030 Kyiv,

Ukraine, sudakov.oleksandr@gmail.com, http://nll.biomed.kiev.ua/
2 Taras Shevchenko National University of Kyiv, Volodymyrska Str. 60, 01030 Kyiv, Ukraine, saa@univ.kiev.ua,

http://rex.knu.ua/

Abstract—Software for simulation of large networks of
coupled non-linear oscillators in clusters, grids and clouds
using graphical processing units (GPU) was designed,
developed, tested and applied for scientific simulations. The
software provides easy integration of new oscillators’
models support, dynamic load distribution between hosts’
central processing units (CPU) and several GPU devices.
Different GPU devices provide speed-up of 12-50 compared
to single core Intel Xeon, 2.4 GHz depending on GPU and
job types. The software was efficiently applied for
simulations of 3D networks with 107-108 oscillators
described by Kuramoto-Sakaguchi model and new types of
“chimera states” were discovered in such simulations.

Keywords— graphics processing unit; CUDA; non-linear

network dynamics; neuroscience; cluster; grid, cloud

I. INTRODUCTION
Research in neuroscience, various fields of physics,

biology and other areas requires computing of dynamic
processes in large networks of coupled oscillators [1, 2].
Integration of systems with large number of non-linear
and non-locally coupled differential equations is required
for such simulations. These computations are very
memory and CPU resource consuming and also generate a
large amount of data. High performance computing
approaches like clusters and grids [3] were traditionally
used for such computations [1, 2]. Conventional high
performance computing approaches with batch job
processing and data stage in/out are considered as not user
friendly for most scientists. Thus many efforts were taken
for development of web and other interfaces for clusters
and grids to simplify usage of different computing
applications [1, 4-6]. There are also trends to utilize
clusters’ and grids’ resources as data [6, 7] and computing
[8] back-ends for interactive desktop applications.
Recently utilization of cloud resources for scientific
computing [9] becomes very popular. Such utilization
include running of virtual machines with users’
applications as jobs in clusters and grids [10], utilization
of containers for construction of specific scientific jobs’
environment [11] and even creation of virtual high
performance (HPC) clusters with preinstalled software

[12]. Additional virtualization layers often reduce
performance of conventional HPC applications and such
applications should be ported to new hardware and
software environments to achieve the best performance.
Today several computing acceleration hardware
technologies are available. Such technologies include
graphics processing units (GPU) computing accelerators
(General Purpose Graphic Processing Units, GPUGU).
Computing accelerators can provide very large
performance for cloud and even for a desktop
environment. They are very attractive for end users
because of low price. Thus porting of existing software for
such hardware computing accelerators is an actual task.
This task is not trivial because architectures of such
accelerators significantly differ from each other and from
conversional message passing distributed memory or
multi-core shared memory approaches.

In present work we describe porting of the software for
simulations in neuroscience for compatibility with GPU
computing accelerators. Original software was developed
by authors [1, 2]. The GPU-powered software can
simultaneously use all GPUs and CPUs available at
computing nodes, work with different CPU instructions
sets in desktops, clusters, grids and clouds. Almost all
features of original software except differential equations
with delay are now supported on GPUs and significant
performance increase was achieved. Described software
was applied in Ukrainian National Grid1 (UNG) [13] for
investigations of chimera states (spatiotemporal patterns
of coexisting coherence and incoherence) in three
dimensional networks with 107-108 coupled oscillators
described by Kuramoto-Sakaguchi model [14, 15].

II. COMPUTING SOFTWARE ARCHITECTURE

A. Software components
The described computing software is the extension of

the original authors’ software for simulation of large
neuronal networks [1, 2]. It consists of three main parts:

1 The work was supported within the Program for Scientific
research, National Academy of Sciences of Ukraine “Grid Infrastructure
and Grid Technologies for Science and Applications”, 2014-2018.

initial data generation tools, parallel differential equations
integrator and trajectory analysis tools.

Initial data generation tools are used for generation of
all dynamical variables initial conditions for all network
elements and adjacency matrix of links topology between
network elements. These data files scale in size as

()O N and ()2O N appropriately, where N is a

number of network elements (neurons, oscillators, etc).
For a large number of network elements (for instance 107)
these data structures especially links adjacency matrix
become very large and data compression is applied.
Utilities xz for LZMA compression are used for initial
conditions files. Special algorithm for links adjacency
matrix compression was developed.

Integrator implements all supported models of network
elements and provides integration of differential equations
on parallel procession hardware based on initial data and
configuration files. Integrator outputs trajectory of
network dynamics that contains the state of all dynamic
variable of network elements in different time moments.
Trajectory has the same format as initial conditions file
and is compressed with parallel xz utilities.

Data analysis tools read trajectory file and output some
analysis results like filtering, statistics, plots, animations,
visualizations, etc.

B. Integrator
Integrator performs integration of non-stiff,

moderately stiff and stiff differential equations by three
different numerical integration methods for supported
models of oscillators’ networks in the form:

()(), ,i
dx f x t t t a
dt

= − , (1)

where x - vector of oscillators’ dynamical variables, t –

time, f - right part of differential equation vector

function that describes model and links topology, it -

possible delays in time, a - vector of model’s parameters.
All supported models of oscillators are hard-coded into

integrator for maximum performance. Models’
parameters, links topologies and mapping of models to
neurons may be changed at runtime via configuration
files. New model may be easily added into the software by
redefinition of the base models’ C++ class. Model’s class
should implement virtual functions for computing of
function f for given dynamic variables x , time moment
t and links topology, reading of configuration parameters
and optionally input and output of integration results. All
other job is done by the integrator itself.

At startup integrator reads configuration file with
specification which models to use. For each model the
default parameters’ values are specified. Then several
groups of neurons may be defined. Each group
corresponds to the model and may redefine the models
default parameters. Matrix of links parameters between

groups should be specified. Then a total neurons number
is given and an array for correspondence of neurons to
groups is specified. Also configuration file contains
parameters of numerical integration algorithm, additional
data output, etc. When network elements configuration is
known the links topology adjacency matrix and initial
state are read. To read the initial state the input read
virtual functions are called for each neuron. Finally the
specified numerical integration procedure is called. Within
this procedure the appropriate functions f are computed
for each neuron. Integrator outputs the results calling the
output virtual functions.

C. Links topology adjacency matrix compression
Coupling of oscillators in the network is specified via

the adjacency matrix, ijA .

1, neuron influences neuron
0, neuron not influences neuron ij

i j
A

i j
⎧

= ⎨
⎩

The size of this matrix scales as ()2O N . For large

networks (105-108 elements) the size of this matrix may
reach terabytes. This matrix is required to be stored in
memory while computing the network dynamics. Thus
compression of this matrix is necessary. Compression and
decompression algorithms are required to have high speed
and compression ratio. General purpose algorithms do not
meet the requirements and a special compression
algorithm was suggested.

This algorithm utilizes the special structure of
adjacency matrix for most network types and belongs to
entropy type algorithms. For each neuron the indices of
neurons connected to it are stored in an array. This array
of the first neuron is called the common vector. The
common vector is stored uncompressed. If network is
regular this vector for other neurons should have the same
number of elements and all elements would be shifted by
the neuron’s index. To perform compression of links to
some neuron all the indices of neurons connected to it are
decremented by the neuron index and the XOR operation
with common vector is performed. For regular network all
such differences would be zero. If the network is slightly
irregular the differences would be non-zero but many
differences would be equal. All unique differences are
stored in differences table. For each neuron the pointer to
its difference is stored in a pointer array. Decompression
is performed by computing XOR of difference and
common array and adding of neuron’s index.

Proposed algorithm provides compression ratios more
then 103 and reduces adjacency matrix size in memory
from terabytes to several megabytes. Decompression may
be performed in stream using iterator concept to get the
index of the next connected neuron on demand.

D. Optimizations and parallelizing
Several optimizations were suggested to achieve the

maximum scalability and performance of the software.

The most resources consuming tool is integrator and the
optimizations are almost related to it.

Depending on the network model each neuron in each
model is defined to have some number of local, exchange
and cache dynamic variables. The memory used for
neurons’ dynamic data is divided into three continuous
regions: local variables, exchange variables and cache
variables of all neurons. Exchange and cache variables are
shared between neurons and local variables are not. Cache
variables are not used for continuous dynamics output
while exchange variables are used. Division of memory
into such areas simplifies parallelizing.

The most resource consuming part of differential
equations (1) integration is computing of right hand
function, f . This computation requires ()O NM

operations, where N is a number of neurons (oscillators),
and M is a number of each neuron’s links. Numerical
integration and output require ()O N operations. Thus
parallelizing is the most applicable for computations of
f . Depending on parallel computer model parallelizing

should be performed in different ways. Thus different
drivers for computing of f on different parallel computer
models are defined. These drivers are called by numerical
integrator.

In shared memory system all memory regions are
shared so each neuron may be computed in parallel to
others. On symmetric multiprocessors (SMP) procedure
level parallelism is applied using OpenMP directives.
SMP parallelizing is very efficient and provides speedup
close to the number of CPU cores in all tested
environments. The maximum number of OpenMP cores
tested is 24.

On strongly coupled distributed memory systems
message passing interface (MPI) parallelizing is applied.
All computing nodes contain all copies of neurons and
topology compression structures. Each node computes
function f for its part of neurons. At first all nodes
perform MPI_Allgather call for cache and exchange
memory regions. Then each node computes function f in
parallel and performs results exchange. Output of results
is performed by the root process which gathers all data.
For MPI parallelizing all neurons are distributed
uniformly between nodes. The efficiency of MPI
parallelizing is significantly lower then the OpenMP one
and depends on the implementation of the MPI_Allgather
call. The speed-up values of MPI version is about 4 [2].

For computing clusters and geographically distributed
grid systems the OpenMP version is the most efficient.
Multiple copies of application with different initial data
files are submitted for single program multiple data
(SPMD) execution in such systems.

III. PORTING TO GRAPHIC PROCESSING UNITS

A. GPU Architecture
In present work NVIDIA computing GPU accelerators

are used. These accelerators contain few multiprocessors.
Each multiprocessor executes large number of parallel
threads. Several threads (warp) execute the same machine
instruction with different data elements. Each thread can
access relatively slow shared global memory, have
registers set and slow local memory area. Threads’ block
consists of several warps. Threads of the same block can
use fast shared memory area. Shared memory of the
block can be divided between threads to increase the
memory per thread. There are also several memory
caches available depending on GPU’s computing
capability. GPU devices communicate with the host via
PCI bus. Host and GPUs forms the distributed memory
system. Host applications and GPU kernels execute
different machine instructions incompatible with each
other. Memory regions of GPU and host are also
different. Data may be transferred between host’s and
device’s memories via PCI bus by the Application
Programmer Interface (API). In present work we use
NVIDIA Compute Unified Device Architecture (CUDA)
API. Depending on the GPU device computing
capability, version of GPU driver and CUDA API
different communication interfaces available.

Performance of GPU significantly depends on the
task’s parallelism, optimizations, communication
overhead, etc. In many cases GPU significantly
outperforms host CPU. In desktop and cloud
environments usually only GPUs are used for
computations while host’s CPUs perform only control
function. Nevertheless in computing clusters, grids and
HPC clouds computing power of nodes with a large
number of CPUs can be comparable with GPU
performance. Thus scheduling of computations and
communications for CPUs and GPUs is required to
achieve the best performance.

B. Software architecture changes
Host’s part of software architecture is almost

unchanged. Device’s part contains copies of some host’s
data structures and some host’s code. The data structures
are needed to be copied to GPU include system
configuration, list of supported neuron’s models,
mapping of neurons to groups, links topology pointer
array, differences table and common vector. Code that
performs computing of function f (1) and links
topology adjacency matrix decompression are needed to
be ported to GPU. The new subsystem added to host’s
part is scheduler that performs load balancing between
CPUs and GPUs.

A large part of host’s code is not necessary on GPU. It
includes reading of configuration files, numerical
integrators and output functions.

C. Code
All computing code of the original software was

written in C++. CUDA C++ compiler supports almost all
C++99 features required for software porting. Thus
porting of the most code was trivial. The difficulties arise
when some host’s library functions need to be called by
GPU device code. In some cases CUDA provides library
calls similar to the host’s ones. Unfortunately many
library functions are unsupported on GPU device. These
calls include Standard Template Library (STL) containers
and algorithms used in original code. Additional template
wrappers were developed to enable support of std::vector
class on device.

The only code was not ported is the code for support of
models with delay. This code requires large data
structures to be concurrently accessed by host and device
and is related to numerical integration libraries. Support
of models with delays is in TODO list.

D. Data structures
The most difficult thing related to GPU computations

is copying of complex data structures with pointers to
GPU. The problem is even more challengeable if objects
with virtual methods created in runtime should be copied
from host to device.

CUDA provides several APIs to copy data structures
from host to device and vice versa: managed memory,
zero-copy pinned memory, and memory allocation and
copying functions. Managed memory is the most
convenient API for CPU/GPU data copying. It provides
mapping of host’s memory addresses to the same
memory addresses in GPU memory. Unfortunately on
conventional NVIDIA GPUs this approach is slow,
mapped memory cannot be concurrently accessed by the
host and device and amount of allocated mapped memory
is limited. GPU architecture GP100 supported by CUDA-
8 significantly extends the capabilities of managed
memory. It is faster, can be concurrently accessed by
GPUs and CPUs and its size limit is significantly
extended. Nevertheless shared GPUs/CPUs managed
memory with transparent copying is slower then the
dedicated host or GPU memory and require expensive
synchronization for concurrent access. For compatibility
and performance reasons managed memory usage is
limited it this software. Zero-copy pinned memory
approach provide mapping of host’s memory to device,
but memory addresses on host and device are different.
This API is fast. Memory allocation and copying API
provides allocation of memory on host/device and data
coping to/from host/device while called on host.

All these APIs were used for porting to GPU. Managed
memory is used only for creation of temporary structures
during initial data copying. Most data structures were
copied by memory allocation and copying API. Special
template functions were designed for coping of
std::vector structures used for neurons array, groups
structures, common vector, differences table and pointer

array. Arrays of numbers are copied as is while arrays of
pointers are copied by allocation of data structures in
device memory, returning of pointers for filling of
temporary data structures and copying these structures
again.

Coping of supported models that are configured in
runtime is performed as follows. Initially the array of all
supported modes objects is created on device. The
memory region with runtime models in mapped to device
using zero-copy memory. All host models have unique
numbers. Device model is selected from the array using
host’s model number as index. For this model the virtual
cloning method is called on device passing the host’s
model region as parameter. This virtual method is aware
about the model type and all host’s data structures are
being copied to device correctly. The cloned model’s
virtual methods for computing of functions f (1) are
also setup automatically by the compiler.

E. Performance optimizations
Scheduler was added to the original software

architecture for load distribution between host and
device. The scheduler divides all neurons into the
portions for computations on the host and each GPU
device found in the system. Computations of functions
f (1) are performed on CPUs and GPUs in parallel.

Host’s portion is computed in parallel on all available
CPUs by OpenMP parallelizing. Directives for cycles
paralleling are used. The first several OpenMP threads
start GPUs’ kernels and continue procession of the host’s
neurons. Kernels for all available GPUs are started in
parallel.

Execution on GPU requires all initial data to be sent
from host to device. These data in provided by the
numerical integration procedure. Results are also need to
be copied back. Communication between the host and
device significantly affects performance of the software.
Overlapping between computations and data transfer is
used to increase performance. All GPU’s neurons are
divided into chunks. At first all exchange and cache data
is sent to GPU. After that local variable for the chunks
are sent to GPU the kernel for these chunks are started
and the coping of results for the chunks are scheduled in
parallel. CUDA streams API is used for asynchronous
data coping and kernels execution. CUDA events API is
used for synchronization. If the number of neurons
exceeds the number of concurrent threads on GPU
(usually 102-104) such scheduling overlaps data transfer
and kernels execution.

When all host’s neurons are computed the scheduler
checks if all GPUs are finished their part and updates the
neurons portions for host and GPUs to make computation
time equal on all devices.

F. Portability
In grids and clouds different hardware and software

architectures may be available and the computing

software should support all of them. The portability is
achieved by providing the binaries compiled for different
hardware architectures. All necessary libraries were
linked statically as much as possible to reduce the number
of necessary extern libraries. On startup application tries
to determine the CPU’s and GPU’s hardware and
executes the binary compatible with current hardware. If
CUDA is unsupported the CPU only version is executed.

IV. TESTING AND APPLICATIONS
Testing of the software was performed to obtain on

GPU and in mixed CPUs/GPUs environments the same
results we got previously on CPUs. Then the performance
optimization was performed for different CPU and GPU
architectures we can access and a production application
of the software was performed.

The massive computations were performed in
Ukrainian grid infrastructure [13] on clusters of Scientific
Center for Medical and Biotechnical Research, NAS of
Ukraine [chimera.biomed.kiev.ua] and Information and
computer center National Taras Shevchenko University
of Kyiv [cluster.univ.kiev.ua]. The first cluster is
heterogeneous. It contains 3 nodes with 16 hyper-
threading (HT) CPU cores Intel Xeon E5620, frequency
2.4 GHz; 3 nodes with 24 HT CPU cores Intel Xeon
E2620, frequency 2,6 GHz; 3 nodes with 12 HT CPU
cores Intel Xeon E5620, frequency 2.4 GHz and 1 node
with 12 HT cores E5-2603, frequency 1.7 GHz. The
second cluster is homogeneous. It has 6 nodes with 24
HT CPU cores Intel Xeon E2620, frequency 2,6 GHz.
Cluster chimera biomed.kiev.ua has NVIDIA Tesla K40
GPU installed at E5-2603 node and GPU NVIDIA
GeForce GT640 at E5620 node. The simulation software
was compiled with gcc-4.9.2 compilers using CUDA-7.5
libraries with optimization to all CPU types mentioned
above.

The massive computations for performance testing
were performed using batch jobs execution in grid. About
3000 trajectories were computed in grid using OpenMP,
GPUs and mixed CPUs/GPUs environments on the
clusters described above. Several runs of the software
were performed in interactive mode at the cluster node of
Institute for Cybernetics, NAS of Ukraine that has two
NVIDIA Tesla K20 GPUs installed and in EGI Federated
Cloud at the virtual machine with 2 NVIDIA Tesla K40
GPUs installed. Testing at desktop and cloud was
performed to check compatibility and multiple GPUs
support and was not used for performance measurement.

The testing computing task was simulation of large 3D
networks described by Kuramoto-Sakaguchi model for
100x100x100, 200x200x200 and 400x400x400
oscillators. The model is described by the equation:

(), ,
', ', ' , ,3

3= sin ,
4

i j k
i j k i j k

d
dt R
ϕ

ϕ ϕ α
π Ω

− −∑

where ϕ - phase of the oscillator; , ', , ', , 'i i j j k k -
oscillators’ numbers on 3D network; region Ω is given

by the equation
2 2 2 2(') (') (')i i j j k k R− + − + − < ; R - coupling

radius; α - phase shift;
Rr
N

= - relative coupling

radius; N - number of oscillators in each dimension.

Figure 1. Hybrid chimera state. N = 400. x = i/N, y = j/N, z = k/N.

Figure 2. Regions of different chimera states. Snapshots of the
chimera states are shown in the inserts. N = 100.

The main goal was to find new types of stationary
states with coherency and incoherency in dynamics
described by this model. The example of a new discovered
hybrid chimera state is presented in Fig. 1. Each pixel
corresponds to the single neuron. Frequencies of the
coherent oscillators are displayed as transparent.
Incoherent oscillators are displayed in color. The total
number of coupled oscillators and differential equations
were changed from 106 to about 108 for different runs. The
whole experiment provided the possibility to find the
regions where different chimera states exist in parameters
space (α, r). The results are shown in Fig. 2 [14, 15]. Thus
the performance measurement results include cases for

different parameters’ values and oscillators’ number as
well as computing times on GPUs, CPUs and in mixed
CPUs/GPU environment.

The aggregated performance measurement results are
presented in Fig. 3. Performance of described software on
GPU in CPU cores, P , characterizes how many baseline
CPU cores are required to achieve the same performance
as GPU provides:

*CPUs CPUs CPU GPU CPU

GPU BL CPUs BL

T n T N T
P

T T N T
= = ,

where GPUT - computing time on GPU, CPUsT -

computing time on CPUsn CPUs, /CPU BLT T - relative
computing time on single CPU to baseline (BL) CPU. For
mixed GPU/CPUs environment the value /GPU CPUsN N
is the ratio of oscillators distributed to GPU and CPUs.
The baseline for this measurement is a single HT core of
Intel Xeon E5620 with frequency 2,4 GHz. Original
software computes such jobs about a week on 16 baseline
cores. It is easy to see from Fig. 3 that performance on
GPU depends mostly on GPU type but not on the number
of neurons, parameters’ values and CPUs number because
data points are located in two narrow clusters. It also
means that GPU efficiently adds its performance to CPUs.

Figure 3. Performance of GPU versus CPU.

V. CONCLUSIONS
The software for computing of nonlinear dynamics on

networks powered by GPU provides the main functionally
of the original software and proved to be efficient on
desktop, clusters, grids and clouds in GPU, CPU and
mixed environment.

The performance of the software on GPU powered
computing node with 16 cores is 2-4 times higher then its’
performance on same node’s CPUs only.

GPU outperforms general purpose single core CPU in
12-50 times depending on CPU’s and GPU’s type for
computations with proposed software.

ACKNOWLEDGMENT
We thank Ukrainian Grid Infrastructure for providing the
computing cluster resources and the parallel and
distributed software.

REFERENCES
[1] Andrii Salnikov, Roman Levchenko, Oleksandr Sudakov

Integrated Grid Environment for Massive Distributed Computing
in Neuroscience // Proc. 6th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications 15-17 September 2011, Prague,
Czech Republic . - p. 198- 202

[2] Levchenko, R. I.; Sudakov, O. O.; Maistrenko, Yu L. Parallel
software for modeling complex dynamics of large neuronal
networks. In: Proc. 17th International Workshop on Nonlinear
Dynamics of Electronic Systems, Rapperswil, Switzerland. 2009.
p. 34-37.

[3] I. Foster and C.Kesselman, The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999

[4] Yuriy O. Koval, Hlib O. Mendrul , Andrii O. Salnikov, Ievgen
A. Sliusar, Olexandr O. Sudakov // Interactive Dynamical
Visualization of Big Data Arrays in Grid. Proc. 8-th IEEE
International Conference IDAACS 2015, 24-26 September 2015,
Warsaw, Poland. , p. 153-156

[5] Salnikov, A.O., Sliusar, I.A., Sudakov, O.O., Savytskyi, O.V.,
Kornelyuk, A.I. MolDynGrid virtual laboratory as a part of
Ukrainian Academic Grid infrastructure // Proc. 5th IEEE
International Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications,
IDAACS'2009., pp. 237-240

[6] Savytskyi, O.V., Sliusar, I.A., Yesylevskyy, S.O., Stirenko,
S.G., Kornelyuk, A.I. Integrated tools for molecular dynamics
simulation data analysis in the MolDynGrid virtual laboratory //
Proc. 6th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and
Applications, IDAACS'2011, pp. 208-211

[7] Sudakov, O., Kononov, M., Sliusar, I., Salnikov, A. User
clients for working with medical images in Ukrainian Grid
infrastructure // Proceedings of the 2013 IEEE 7th International
Conference on Intelligent Data Acquisition and Advanced
Computing Systems, IDAACS 2013, 2, 6663016, pp. 705-709

[8] Cyrille Rossant. Learning IPython for Interactive Computing
and Data Visualization. Packt Publishing. – 2015 – 175 p.

[9] WANG, Lizhe, et al. Scientific cloud computing: Early
definition and experience. In: High Performance Computing and
Communications, 2008. HPCC'08. 10th IEEE International
Conference on. Ieee, 2008. p. 825-830.

[10] Boretskyi, O., Salnikov, A., Sliusar, I., Sudakov, O., Boyko, Y.
Rainbow framework: Running virtual machines on demand as a
grid jobs. // Proc. IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology
and Applications, IDAACS 2015, pp. 972-976

[11] Walker, E., Gardner, J. P., Litvin, V., & Turner, E. L. (2007).
Personal adaptive clusters as containers for scientific jobs. Cluster
Computing, 10(3), 339-350.

[12] Amazon Web Services https://aws.amazon.com/
[13] Zynovyev, M., Svistunov, S., Sudakov, O., & Boyko, Y. (2007,

September). Ukrainian Grid infrastructure: practical experience. //
4-th International Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications.
Dortmund, Germany, September 6-8, 2007 pp. 237-240

[14] Maistrenko, Y., Sudakov, O., Osiv, O., Maistrenko, V.
Chimera states in three dimensions // New Journal of Physics, 17
(7), 073037.

[15] Volodymyr Maistrenko, Oleksandr Sudakov, Oleksiy Osiv,
Yuri Maistrenko. Multiple scroll wave chimera states
https://arxiv.org/abs/1702.00161

