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Abstract—Software for simulation of large networks of 
coupled non-linear oscillators in clusters, grids and clouds 
using graphical processing units (GPU) was designed, 
developed, tested and applied for scientific simulations. The 
software provides easy integration of new oscillators’ 
models support, dynamic load distribution between hosts’ 
central processing units (CPU) and several GPU devices. 
Different GPU devices provide speed-up of 12-50 compared 
to single core Intel Xeon, 2.4 GHz depending on GPU and 
job types. The software was efficiently applied for 
simulations of 3D networks with 107-108 oscillators 
described by Kuramoto-Sakaguchi model and new types of  
“chimera states” were discovered in such simulations. 
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I. INTRODUCTION 
Research in neuroscience, various fields of physics, 

biology and other areas requires computing of dynamic 
processes in large networks of coupled oscillators [1, 2]. 
Integration of systems with large number of non-linear 
and non-locally coupled differential equations is required 
for such simulations. These computations are very 
memory and CPU resource consuming and also generate a 
large amount of data. High performance computing 
approaches like clusters and grids [3] were traditionally 
used for such computations [1, 2]. Conventional high 
performance computing approaches with batch job 
processing and data stage in/out are considered as not user 
friendly for most scientists. Thus many efforts were taken 
for development of web and other interfaces for clusters 
and grids to simplify usage of different computing 
applications [1, 4-6]. There are also trends to utilize 
clusters’ and grids’ resources as data [6, 7] and computing 
[8] back-ends for interactive desktop applications. 
Recently utilization of cloud resources for scientific 
computing [9] becomes very popular. Such utilization 
include running of virtual machines with users’ 
applications as jobs in clusters and grids [10], utilization 
of containers for construction of specific scientific jobs’ 
environment [11] and even creation of virtual high 
performance (HPC) clusters with preinstalled software 

[12]. Additional virtualization layers often reduce 
performance of conventional HPC applications and such 
applications should be ported to new hardware and 
software environments to achieve the best performance. 
Today several computing acceleration hardware 
technologies are available. Such technologies include 
graphics processing units (GPU) computing accelerators 
(General Purpose Graphic Processing Units, GPUGU). 
Computing accelerators can provide very large 
performance for cloud and even for a desktop 
environment. They are very attractive for end users 
because of low price. Thus porting of existing software for 
such hardware computing accelerators is an actual task. 
This task is not trivial because architectures of such 
accelerators significantly differ from each other and from 
conversional message passing distributed memory or 
multi-core shared memory approaches. 

In present work we describe porting of the software for 
simulations in neuroscience for compatibility with GPU 
computing accelerators. Original software was developed 
by authors [1, 2]. The GPU-powered software can 
simultaneously use all GPUs and CPUs available at 
computing nodes, work with different CPU instructions 
sets in desktops, clusters, grids and clouds. Almost all 
features of original software except differential equations 
with delay are now supported on GPUs and significant 
performance increase was achieved. Described software 
was applied in Ukrainian National Grid1 (UNG) [13] for 
investigations of chimera states (spatiotemporal patterns 
of coexisting coherence and incoherence) in three 
dimensional networks with 107-108 coupled oscillators 
described by Kuramoto-Sakaguchi model [14, 15]. 

II. COMPUTING SOFTWARE ARCHITECTURE 

A. Software components  
The described computing software is the extension of 

the original authors’ software for simulation of large 
neuronal networks [1, 2]. It consists of three main parts: 
                                                           

1  The work was supported within the Program for Scientific 
research, National Academy of Sciences of Ukraine “Grid Infrastructure 
and Grid Technologies for Science and Applications”, 2014-2018.  



initial data generation tools, parallel differential equations 
integrator and trajectory analysis tools.  

Initial data generation tools are used for generation of 
all dynamical variables initial conditions for all network 
elements and adjacency matrix of links topology between 
network elements. These data files scale in size as 

( )O N  and ( )2O N  appropriately, where N  is a 

number of network elements (neurons, oscillators, etc). 
For a large number of network elements (for instance 107) 
these data structures especially links adjacency matrix 
become very large and data compression is applied. 
Utilities xz for LZMA compression are used for initial 
conditions files. Special algorithm for links adjacency 
matrix compression was developed.  

Integrator implements all supported models of network 
elements and provides integration of differential equations 
on parallel procession hardware based on initial data and 
configuration files. Integrator outputs trajectory of 
network dynamics that contains the state of all dynamic 
variable of network elements in different time moments. 
Trajectory has the same format as initial conditions file 
and is compressed with parallel xz utilities. 

Data analysis tools read trajectory file and output some 
analysis results like filtering, statistics, plots, animations, 
visualizations, etc. 

B. Integrator 
Integrator performs integration of non-stiff, 

moderately stiff and stiff differential equations by three 
different numerical integration methods for supported 
models of oscillators’ networks in the form: 

( )( ), ,i
dx f x t t t a
dt

= − ,  (1) 

where x  - vector of oscillators’ dynamical variables, t  – 

time, f  - right part of differential equation vector 

function that describes model and links topology, it  - 

possible delays in time, a  - vector of model’s parameters. 
All supported models of oscillators are hard-coded into 

integrator for maximum performance. Models’ 
parameters, links topologies and mapping of models to 
neurons may be changed at runtime via configuration 
files. New model may be easily added into the software by 
redefinition of the base models’ C++ class. Model’s class 
should implement virtual functions for computing of 
function f  for given dynamic variables x , time moment 
t  and links topology, reading of configuration parameters 
and optionally input and output of integration results. All 
other job is done by the integrator itself. 

At startup integrator reads configuration file with 
specification which models to use. For each model the 
default parameters’ values are specified. Then several 
groups of neurons may be defined. Each group 
corresponds to the model and may redefine the models 
default parameters. Matrix of links parameters between 

groups should be specified. Then a total neurons number 
is given and an array for correspondence of neurons to 
groups is specified. Also configuration file contains 
parameters of numerical integration algorithm, additional 
data output, etc. When network elements configuration is 
known the links topology adjacency matrix and initial 
state are read. To read the initial state the input read 
virtual functions are called for each neuron. Finally the 
specified numerical integration procedure is called. Within 
this procedure the appropriate functions f  are computed 
for each neuron. Integrator outputs the results calling the 
output virtual functions. 

C. Links topology adjacency matrix compression 
Coupling of oscillators in the network is specified via 

the adjacency matrix, ijA . 

1, neuron  influences neuron 
0, neuron  not influences neuron ij

i j
A

i j
⎧

= ⎨
⎩

 

The size of this matrix scales as ( )2O N . For large 

networks (105-108 elements) the size of this matrix may 
reach terabytes. This matrix is required to be stored in 
memory while computing the network dynamics. Thus 
compression of this matrix is necessary. Compression and 
decompression algorithms are required to have high speed 
and compression ratio. General purpose algorithms do not 
meet the requirements and a special compression 
algorithm was suggested. 

This algorithm utilizes the special structure of 
adjacency matrix for most network types and belongs to 
entropy type algorithms. For each neuron the indices of 
neurons connected to it are stored in an array. This array 
of the first neuron is called the common vector. The 
common vector is stored uncompressed. If network is 
regular this vector for other neurons should have the same 
number of elements and all elements would be shifted by 
the neuron’s index. To perform compression of links to 
some neuron all the indices of neurons connected to it are 
decremented by the neuron index and the XOR operation 
with common vector is performed. For regular network all 
such differences would be zero. If the network is slightly 
irregular the differences would be non-zero but many 
differences would be equal. All unique differences are 
stored in differences table. For each neuron the pointer to 
its difference is stored in a pointer array. Decompression 
is performed by computing XOR of difference and 
common array and adding of neuron’s index. 

Proposed algorithm provides compression ratios more 
then 103 and reduces adjacency matrix size in memory 
from terabytes to several megabytes. Decompression may 
be performed in stream using iterator concept to get the 
index of the next connected neuron on demand.  

D. Optimizations and parallelizing 
Several optimizations were suggested to achieve the 

maximum scalability and performance of the software. 



The most resources consuming tool is integrator and the 
optimizations are almost related to it.  

Depending on the network model each neuron in each 
model is defined to have some number of local, exchange 
and cache dynamic variables. The memory used for 
neurons’ dynamic data is divided into three continuous 
regions: local variables, exchange variables and cache 
variables of all neurons. Exchange and cache variables are 
shared between neurons and local variables are not. Cache 
variables are not used for continuous dynamics output 
while exchange variables are used. Division of memory 
into such areas simplifies parallelizing. 

The most resource consuming part of differential 
equations (1) integration is computing of right hand 
function, f . This computation requires ( )O NM  

operations, where N  is a number of neurons (oscillators), 
and M  is a number of each neuron’s links. Numerical 
integration and output require ( )O N  operations. Thus 
parallelizing is the most applicable for computations of 
f . Depending on parallel computer model parallelizing 

should be performed in different ways. Thus different 
drivers for computing of f  on different parallel computer 
models are defined. These drivers are called by numerical 
integrator. 

In shared memory system all memory regions are 
shared so each neuron may be computed in parallel to 
others. On symmetric multiprocessors (SMP) procedure 
level parallelism is applied using OpenMP directives. 
SMP parallelizing is very efficient and provides speedup 
close to the number of CPU cores in all tested 
environments. The maximum number of OpenMP cores 
tested is 24.  

On strongly coupled distributed memory systems 
message passing interface (MPI) parallelizing is applied. 
All computing nodes contain all copies of neurons and 
topology compression structures. Each node computes 
function f  for its part of neurons. At first all nodes 
perform MPI_Allgather call for cache and exchange 
memory regions. Then each node computes function f  in 
parallel and performs results exchange. Output of results 
is performed by the root process which gathers all data. 
For MPI parallelizing all neurons are distributed 
uniformly between nodes. The efficiency of MPI 
parallelizing is significantly lower then the OpenMP one 
and depends on the implementation of the MPI_Allgather 
call. The speed-up values of MPI version is about 4 [2]. 

For computing clusters and geographically distributed 
grid systems the OpenMP version is the most efficient. 
Multiple copies of application with different initial data 
files are submitted for single program multiple data 
(SPMD) execution in such systems.  

III. PORTING TO GRAPHIC PROCESSING UNITS 

A. GPU Architecture 
In present work NVIDIA computing GPU accelerators 

are used. These accelerators contain few multiprocessors. 
Each multiprocessor executes large number of parallel 
threads. Several threads (warp) execute the same machine 
instruction with different data elements. Each thread can 
access relatively slow shared global memory, have 
registers set and slow local memory area. Threads’ block 
consists of several warps. Threads of the same block can 
use fast shared memory area. Shared memory of the 
block can be divided between threads to increase the 
memory per thread. There are also several memory 
caches available depending on GPU’s computing 
capability. GPU devices communicate with the host via 
PCI bus. Host and GPUs forms the distributed memory 
system. Host applications and GPU kernels execute 
different machine instructions incompatible with each 
other. Memory regions of GPU and host are also 
different. Data may be transferred between host’s and 
device’s memories via PCI bus by the Application 
Programmer Interface (API). In present work we use 
NVIDIA Compute Unified Device Architecture (CUDA) 
API. Depending on the GPU device computing 
capability, version of GPU driver and CUDA API 
different communication interfaces available. 

Performance of GPU significantly depends on the 
task’s parallelism, optimizations, communication 
overhead, etc. In many cases GPU significantly 
outperforms host CPU. In desktop and cloud 
environments usually only GPUs are used for 
computations while host’s CPUs perform only control 
function. Nevertheless in computing clusters, grids and 
HPC clouds computing power of nodes with a large 
number of CPUs can be comparable with GPU 
performance. Thus scheduling of computations and 
communications for CPUs and GPUs is required to 
achieve the best performance. 

B. Software architecture changes 
Host’s part of software architecture is almost 

unchanged. Device’s part contains copies of some host’s 
data structures and some host’s code. The data structures 
are needed to be copied to GPU include system 
configuration, list of supported neuron’s models, 
mapping of neurons to groups, links topology pointer 
array, differences table and common vector. Code that 
performs computing of function f  (1) and links 
topology adjacency matrix decompression are needed to 
be ported to GPU. The new subsystem added to host’s 
part is scheduler that performs load balancing between 
CPUs and GPUs. 

A large part of host’s code is not necessary on GPU. It 
includes reading of configuration files, numerical 
integrators and output functions. 



C. Code 
All computing code of the original software was 

written in C++. CUDA C++ compiler supports almost all 
C++99 features required for software porting. Thus 
porting of the most code was trivial. The difficulties arise 
when some host’s library functions need to be called by 
GPU device code. In some cases CUDA provides library 
calls similar to the host’s ones. Unfortunately many 
library functions are unsupported on GPU device. These 
calls include Standard Template Library (STL) containers 
and algorithms used in original code. Additional template 
wrappers were developed to enable support of std::vector 
class on device.  

The only code was not ported is the code for support of 
models with delay. This code requires large data 
structures to be concurrently accessed by host and device 
and is related to numerical integration libraries. Support 
of models with delays is in TODO list. 

D. Data structures 
The most difficult thing related to GPU computations 

is copying of complex data structures with pointers to 
GPU. The problem is even more challengeable if objects 
with virtual methods created in runtime should be copied 
from host to device. 

CUDA provides several APIs to copy data structures 
from host to device and vice versa: managed memory, 
zero-copy pinned memory, and memory allocation and 
copying functions. Managed memory is the most 
convenient API for CPU/GPU data copying. It provides 
mapping of host’s memory addresses to the same 
memory addresses in GPU memory. Unfortunately on 
conventional NVIDIA GPUs this approach is slow, 
mapped memory cannot be concurrently accessed by the 
host and device and amount of allocated mapped memory 
is limited. GPU architecture GP100 supported by CUDA-
8 significantly extends the capabilities of managed 
memory. It is faster, can be concurrently accessed by 
GPUs and CPUs and its size limit is significantly 
extended. Nevertheless shared GPUs/CPUs managed 
memory with transparent copying is slower then the 
dedicated host or GPU memory and require expensive 
synchronization for concurrent access. For compatibility 
and performance reasons managed memory usage is 
limited it this software. Zero-copy pinned memory 
approach provide mapping of host’s memory to device, 
but memory addresses on host and device are different. 
This API is fast. Memory allocation and copying API 
provides allocation of memory on host/device and data 
coping to/from host/device while called on host. 

All these APIs were used for porting to GPU. Managed 
memory is used only for creation of temporary structures 
during initial data copying. Most data structures were 
copied by memory allocation and copying API. Special 
template functions were designed for coping of 
std::vector structures used for neurons array, groups 
structures, common vector, differences table and pointer 

array. Arrays of numbers are copied as is while arrays of 
pointers are copied by allocation of data structures in 
device memory, returning of pointers for filling of 
temporary data structures and copying these structures 
again. 

Coping of supported models that are configured in 
runtime is performed as follows. Initially the array of all 
supported modes objects is created on device. The 
memory region with runtime models in mapped to device 
using zero-copy memory. All host models have unique 
numbers. Device model is selected from the array using 
host’s model number as index. For this model the virtual 
cloning method is called on device passing the host’s 
model region as parameter. This virtual method is aware 
about the model type and all host’s data structures are 
being copied to device correctly. The cloned model’s 
virtual methods for computing of functions f  (1) are 
also setup automatically by the compiler. 

E. Performance optimizations 
Scheduler was added to the original software 

architecture for load distribution between host and 
device. The scheduler divides all neurons into the 
portions for computations on the host and each GPU 
device found in the system. Computations of functions 
f  (1) are performed on CPUs and GPUs in parallel. 

Host’s portion is computed in parallel on all available 
CPUs by OpenMP parallelizing. Directives for cycles 
paralleling are used. The first several OpenMP threads 
start GPUs’ kernels and continue procession of the host’s 
neurons. Kernels for all available GPUs are started in 
parallel. 

Execution on GPU requires all initial data to be sent 
from host to device. These data in provided by the 
numerical integration procedure. Results are also need to 
be copied back. Communication between the host and 
device significantly affects performance of the software. 
Overlapping between computations and data transfer is 
used to increase performance. All GPU’s neurons are 
divided into chunks. At first all exchange and cache data 
is sent to GPU. After that local variable for the chunks 
are sent to GPU the kernel for these chunks are started 
and the coping of results for the chunks are scheduled in 
parallel. CUDA streams API is used for asynchronous 
data coping and kernels execution. CUDA events API is 
used for synchronization. If the number of neurons 
exceeds the number of concurrent threads on GPU 
(usually 102-104) such scheduling overlaps data transfer 
and kernels execution. 

When all host’s neurons are computed the scheduler 
checks if all GPUs are finished their part and updates the 
neurons portions for host and GPUs to make computation 
time equal on all devices.  

F. Portability 
In grids and clouds different hardware and software 

architectures may be available and the computing 



software should support all of them. The portability is 
achieved by providing the binaries compiled for different 
hardware architectures. All necessary libraries were 
linked statically as much as possible to reduce the number 
of necessary extern libraries. On startup application tries 
to determine the CPU’s and GPU’s hardware and 
executes the binary compatible with current hardware. If 
CUDA is unsupported the CPU only version is executed.  

IV. TESTING AND APPLICATIONS 
Testing of the software was performed to obtain on 

GPU and in mixed CPUs/GPUs environments the same 
results we got previously on CPUs. Then the performance 
optimization was performed for different CPU and GPU 
architectures we can access and a production application 
of the software was performed. 

The massive computations were performed in 
Ukrainian grid infrastructure [13] on clusters of Scientific 
Center for Medical and Biotechnical Research, NAS of 
Ukraine [chimera.biomed.kiev.ua] and Information and 
computer center National Taras Shevchenko University 
of Kyiv [cluster.univ.kiev.ua]. The first cluster is 
heterogeneous. It contains 3 nodes with 16 hyper-
threading (HT) CPU cores Intel Xeon E5620, frequency 
2.4 GHz; 3 nodes with 24 HT CPU cores Intel Xeon 
E2620, frequency 2,6 GHz; 3 nodes with 12 HT CPU 
cores Intel Xeon E5620, frequency 2.4 GHz and 1 node 
with 12 HT cores E5-2603, frequency 1.7 GHz. The 
second cluster is homogeneous. It has 6 nodes with 24 
HT CPU cores Intel Xeon E2620, frequency 2,6 GHz. 
Cluster chimera biomed.kiev.ua has NVIDIA Tesla K40 
GPU installed at E5-2603 node and GPU NVIDIA 
GeForce GT640 at E5620 node. The simulation software 
was compiled with gcc-4.9.2 compilers using CUDA-7.5 
libraries with optimization to all CPU types mentioned 
above. 

The massive computations for performance testing 
were performed using batch jobs execution in grid. About 
3000 trajectories were computed in grid using OpenMP, 
GPUs and mixed CPUs/GPUs environments on the 
clusters described above. Several runs of the software 
were performed in interactive mode at the cluster node of 
Institute for Cybernetics, NAS of Ukraine that has two 
NVIDIA Tesla K20 GPUs installed and in EGI Federated 
Cloud at the virtual machine with 2 NVIDIA Tesla K40 
GPUs installed. Testing at desktop and cloud was 
performed to check compatibility and multiple GPUs 
support and was not used for performance measurement.  

The testing computing task was simulation of large 3D 
networks described by Kuramoto-Sakaguchi model for 
100x100x100, 200x200x200 and 400x400x400 
oscillators. The model is described by the equation: 

( ), ,
', ', ' , ,3

3= sin ,
4

i j k
i j k i j k

d
dt R
ϕ

ϕ ϕ α
π Ω

− −∑   

where ϕ  - phase of the oscillator; , ', , ', , 'i i j j k k  - 
oscillators’ numbers on 3D network; region Ω  is given 

by the equation 
2 2 2 2( ') ( ') ( ')i i j j k k R− + − + − < ; R  - coupling 

radius; α  - phase shift; 
Rr
N

=  - relative coupling 

radius; N - number of oscillators in each dimension. 

 
Figure 1.  Hybrid chimera state.  N = 400. x = i/N, y = j/N, z = k/N. 

 

Figure 2.  Regions of different chimera states.  Snapshots of the 
chimera states are shown in the inserts. N = 100.  

The main goal was to find new types of stationary 
states with coherency and incoherency in dynamics 
described by this model. The example of a new discovered 
hybrid chimera state is presented in Fig. 1. Each pixel 
corresponds to the single neuron. Frequencies of the 
coherent oscillators are displayed as transparent. 
Incoherent oscillators are displayed in color. The total 
number of coupled oscillators and differential equations 
were changed from 106 to about 108 for different runs. The 
whole experiment provided the possibility to find the 
regions where different chimera states exist in parameters 
space (α, r). The results are shown in Fig. 2 [14, 15]. Thus 
the performance measurement results include cases for 



different parameters’ values and oscillators’ number as 
well as computing times on GPUs, CPUs and in mixed 
CPUs/GPU environment.  

The aggregated performance measurement results are 
presented in Fig. 3. Performance of described software on 
GPU in CPU cores, P , characterizes how many baseline 
CPU cores are required to achieve the same performance 
as GPU provides: 

*CPUs CPUs CPU GPU CPU

GPU BL CPUs BL

T n T N T
P

T T N T
= = ,  

where GPUT  - computing time on GPU, CPUsT  - 

computing time on CPUsn  CPUs, /CPU BLT T  - relative 
computing time on single CPU to baseline (BL) CPU. For 
mixed GPU/CPUs environment the value /GPU CPUsN N  
is the ratio of oscillators distributed to GPU and CPUs. 
The baseline for this measurement is a single HT core of 
Intel Xeon E5620 with frequency 2,4 GHz. Original 
software computes such jobs about a week on 16 baseline 
cores. It is easy to see from Fig. 3 that performance on 
GPU depends mostly on GPU type but not on the number 
of neurons, parameters’ values and CPUs number because 
data points are located in two narrow clusters. It also 
means that GPU efficiently adds its performance to CPUs. 

 
Figure 3.  Performance of GPU versus CPU. 

V. CONCLUSIONS 
The software for computing of nonlinear dynamics on 

networks powered by GPU provides the main functionally 
of the original software and proved to be efficient on 
desktop, clusters, grids and clouds in GPU, CPU and 
mixed environment.  

The performance of the software on GPU powered 
computing node with 16 cores is 2-4 times higher then its’ 
performance on same node’s CPUs only. 

GPU outperforms general purpose single core CPU in 
12-50 times depending on CPU’s and GPU’s type for 
computations with proposed software. 
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