
Hierarchical Cloud Storage Engine
Andrei Dobrin, Cristian Dragana, Grigore Stamatescu, Valentin Sgarciu

Department of Automatic Control and Industrial Informatics
University ”Politehnica” of Bucharest, Romania

Email: {andrei, cdragana}@imtt.pub.ro, grigore.stamatescu@upb.ro, vsgarciu@aii.pub.ro

Abstract—Cloud computing and cloud storage systems are
being used more and more in a variety of domains, from everyday
user applications like healthcare monitoring systems and intelli-
gent buildings to military devices. The deployment of these frame-
works also enables modern control and automation paradigms
found in cyber-physical systems and Industry 4.0. Driven by
exponential decreases in computing and storage costs along with
high bandwidth, low-latency communication networks, cloud-
based infrastructures have increasingly been adopted in large-
scale industrial applications. Our paper proposes hierarchical or
key-value databases for systems that gather a very big number
of data items from a variety of sensors, with focus on smart
building and smart city scenarios. We discuss GT.M as a key-
value database engine, optimized for transaction processing with
a very high throughput. Results of a simulation-based study
comparing hierarchical and relational database performance for
several types of operations are presented.

Keywords: Cloud engine system; GT.M; key-value database;
hierarchical database; NoSQL database; big data; data mining

I. INTRODUCTION

In this article we continute the work of [1] where we studied
the challanges of storing data in Cloud platforms and propose
a new solution for storing big amounts of data from WSNs
in the cloud with the idea of using hierarchical databases,
more concretely, GT.M as the engine for the database. To
test if this is a viable solution, we compared the said engine
with PostgreSQL. The objective of comparing GT.M with
PostgreSQL is to test if a hierarchical model is better suited
to store data from a large number of sensors. A key-value
database can be better than a relational one because it is
specially optimized for a high number of transactions. The
data used for this experiment was from a building management
system.

Of course, after storing the data we must interpret and
understand its characteristics. Big data is a relatively new
concept that is having a big impact in multiple research areas
and in multiple industries. This domain is important since
it can reveal totally new aspects of systems from customer
buying trends (how to group products in shops to increase
selling of products) to sentiment analysis on Twitter and even
the decoding of the human genome. With data mining we can
gather a lot of information that previously we didn’t even knew
was there in the first place and we can make systems more
efficient, more precise and more robust since we can detect
current challenges, where potential challenges might arise and
of course where we can improve the system. If one wants to
understand a system, one needs to gather as much data as it
can from it, in all sorts of stages and from all types of ”areas”.

To do all this we need sensors, a lot of them in order to be
able to replicate the state of the system as accurately as we
can.

In this paper section II gives an overview of what other
researchers have done in the domain of Key-Value databases,
section III gives an overview of the two main types of
databases (hierarchical and relational databases), each type’s
characteristics and the advantages and disadvantages of one
over the other. Section IV studies how the information can be
analysed with the help of big data and data mining concepts.
Section V shows the experimental results of using GT.M
versus PostgreSQL as a database where the benefits, but
also the potential challenges of GT.M are presented. The last
section presents the conclusions and details future steps to
evaluate GT.M as viable solution for cloud storage in a smart
building environment.

II. RELATED WORK

As [2] strongly emphasizes, an important factor, that can
make this type of project successful or not, is how the
database is designed. To handle the information on a database,
researchers created a high-level programming model called
MapReduce with which high volumes of data can be processed
by using parallel and distributed computing on large clusters
or groups of nodes. This can be used in GT.M with the idea to
try to store the information on multiple databases at the same
time. With clustering of information processing times can be
reduced if the architecture is well designed.

Hierarchical databases are used in a variety of domains for
their advantages. In [3] such an hierarchical database is used to
store location data for personal communication services. Their
scheme allows to dynamically adjust user location information
distribution based on the patterns of the mobile terminals
(MT). A unique distribution strategy is determined for each
MT in a way that both assures a complete coverage and an
optimization of resources. Another important aspect in the
scheme is that location pointers are set up at determined loca-
tions to indicate the current location of the MTs. This was a
necessary step to effectively reduce the signaling and database
access overhead for location registration and call delivery.
Moreover, the required processing is computed by a distributed
network of registers which, in the end, offers the benefit of
removing the necessity to use centralized coordination.



III. HIERARCHICAL DATABASES

Most mainstream database systems like SQL Server,
MySQL, DB2, Oracle and others are of a type that is called
relational system. This means that we have tables of data and
between them we have relationships with the use of keys. This
is the prefered type of system because it is sometimes easier
for people to understand its concept and implement it. This
is done by creating a database with all the information split
between tables and then inserting small pieces into each table.
Hierarchical databases on the other hand are a different type
of system because they store the information, for a particular
segment of the data that needs to be stored, or better said for a
chunk of a system in one table. This stored information can be
separated by keys, but in a different way than in the relational
model, their structure is like the one of a tree. With the main
key as the root, other keys as leaves and the information stored
beneath each leaf.

A. Trees in data structures

A tree is a set of elements connected by straight lines
in a non-linear manner and with no closed loops. If a tree
has n nodes then, it contains n-1 graph edges. The points of
connection are known as children nodes and the segments as
branches. The last nodes being called leaves. A tree can either
have a central node if it has the structure of a centered graph
or have a root node if each other nodes are one graph edge
further away from the one considered as the root.

To generate a rooted tree we have this mathematical func-
tion:

T (x) =

∞∑
n=1

Tnx
n = xexp

∞∑
r=1

1

r
T (xr)

This function is related to the one used for generating a
number of unrooted trees by:

t(x) =

∞∑
n=1

tnx
n = T (x)− 1

2
[T 2(x)− T (x2)]

From [4] we know that:
limn→∞

tnn
5/2

αn = β
Where the two constants are given by:
α = limn→∞

Tn

Tn−1
= 2.955765

β = 1√
2π

[1 +
∑∞
k=2 T (

1
αk )

1
αk ]

3/2 = 0.5349485

B. Hierarchical database vs relational database

Even though key-value databases are less common, they
are used in a variety of systems in which they work better
than relational databases for those types of applications. For
example, one type of system in which relational databases do
not work very well, even if there exist these types of systems
from Oracle, are core banking systems. In core banking
systems, there is a need for a database engine that supports
multiple transactions per second for each client and moreover,
in some periods of the year like quarter interest calculation
and financial year end, the number of transactions posted is
of a very big order. This can affect a lot how the system
behaves in such an event and a lot of things can happen that
can temporarily disrupt its functionality or even stop it which
is of course unacceptable.

A good system design can prevent this, but in the case
of a key-value database it is easier to support this kind of
transactions because the database can be implemented in such
a way that all the information which is needed for these
operations can be stored in one single table or in the worst case
in a few tables that relate to each other with exact pointers.
So, if the database has a good design and all operations
which affect its state or the query run on it does not need
a lot of additional operations which have a big impact on the
processor, this type of database is much faster when it comes
to processing multiple transactions per second from multiple
sources.

A visual representation of the main difference between the
two types of databases can be seen in the below figure 1:

As it can be seen in the above figure, a key-value database
looks like an index in a relational database and it does have a
lot of the features of an index. At a first glance, the first type of
database can be easier to understand and to grasp the different
pieces of information which it stores then the second type of
database, but this is just at the beginning, before we understand
the hierarchical model since this model can be constructed in
a way that resembles the real system more clearly. In time,
this can be much easier to work with.

C. Advantages and disadvantages of hierarchical databases

At a first glance, Relational databases are superior to
NoSQL ones and this is because of three reasons:
• Difficult or impossible to extend the data model if the

applications that uses it are constructed in a very tight
way since they will also need to be modified;

• It is not easy to force consistency between all logical
entities;

• Queries can take a lot of time if they are complex and no
keys or indexes are used or they do not follow the model
of the database.

Even with these disadvantages, hierarchical databases are
faster than relational databases. If they are designed for a
single type of application they are a better choice, meaning we
do not intend to use the same database for other applications
which were not designed to work with this model. Moreover,
in the case of multiple transaction per second relational
databases have a hard time coping with all the data whereas
key-value databases can process them instantly.

D. GT.M

GT.M is a high-throughput key-value database engine op-
timized for transaction processing, it is a NoSQL database
type. It is an implementation of ANSI standard M for several
UNIX systems and Linux, but now a version for Windows has
been developed. Since 2000 the database is open source and
is maintained by FIS Global, a company that offers financial
applications and data storage solutions, since it is being used
for the FIS Profile banking application which powers many
banks on a world-wide coverage, the biggest being ING
DIRECT in Spain, Romania, France, Italy, Holland, India, UK.



Fig. 1. Relational (left) vs. hierarchical (right) databases

Also, the database is used in other industries like healthcare,
transportation, manufacturing and others. [5]

GT.M is used mainly as a core banking system and as
it is noted in [6], the quality and availability of service is
very important for such a system. If this is not the case, the
system cannot perform well and customer satisfaction is out of
the question. In today’s era customers have great expectations
from their banks and they demand 24/7 100% availability of
service. Since GT.M is almost 50 years old and it is used
in some of the biggest banks, shop chains and insurance
companies it proves its capabilities and advantages. This
makes it a possible candidate for a cloud engine server that is
used to store sensor data since it can process transactions at a
very high speed.

In hierarchical databases, natively, you can’t use relational
queries. Instead an interface has to be created in order to
support this type of language. This is not a simple task since
the queries might be very complex or even if the query looks
simple, the actual operations on the database can be very hard
on the disk and processor if the interface is not correctly
designed. Therefore, the interface to a hierarchical DBMS
poses a difficult translation challenge [7]. When creating such
an interface these guidelines have to be considered:
• Include all SQL features that can be translated to DL/1

features to make use of efficient IMS capabilities;
• Include SQL features that are frequently used in applica-

tions so that most of the applications can be covered by
the defined SQL subset;

• Exclude SQL features that are seldom utilized to avoid
the implementation of a relational DBMS and the run
time overhead of a large system. [8]

IV. RESULTS

To test if GT.M is faster and if it is with how much, a
comparison with PostgreSQL has been done with a set of data

from the temperature sensors used in a building management
system. The building is the new research facility, built in 2016
in the Polytechnic University of Bucharest campus. The data
is represented by two columns: one with the date-time value
when the data was recorded and the second with the actual
value read by the sensor.

The simulation was done on the same machine, in the same
conditions, at the same time by importing in PostgreSQL a
file and then in GT.M the same file. The machine had Ubuntu
14.04 since it is the best version of Ubuntu that can run GT.M
at the current moment. The import in both databases was done
from command line to minimise the differences.

As it can be seen in figure 2, as the record number per
seconds increases so does the gap between the two databases
types. For example, GT.M is 12 times faster than PostgreSQL
for a file with more than 4.000.000 records. This is a very
important gap, but it is also a very important observation: such
a database has benefits only for very large sets of data. If the
dataset per second that needs to be recorded in the database
is relatively small, the benefits of a hierarchical database are
not easily seen.

Testing reveals a another challenge with the hierarchical
database: the algorithm must assure that the received data
has different values for the first column because if they do
not (the sensors send data very fast and they cannot include
milliseconds in the date-time value for example, only the last
value of the sensor will be stored in the database.

One of the benefits of GT.M is that the code is ”embed-
ded” in the database so we can program everything in the
database, even every transaction type individually. Adding a
programmed count as an additional column in the database
(to allow duplicates the first file column) increases the trans-
actioning time by a big coefficient as it can be seen in Figure
3

Even though this might seem like a disadvantage of a



0 2000 4000 6000 8000 10000 12000 14000 16000
Number of records x1000

0

10

20

30

40

50
tim

e 
(s

)
INSERT statement (DateTime and Value only)

PostgreSQL
GT.M

Fig. 2. PostgreSQL vs GT.M transactions time

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of records x1000

0

20

40

60

80

100

120

140

160

tim
e 

(s
)

INSERT statement GT.M with and without processing (DateTime and Value only)

GT.M without processing
GT.M with processing

Fig. 3. GT.M with and without transaction processing

hierarchical database, it can be used in as an advantage for the
end users by making a lot of the processing of the incoming
information before saving the data in the database and not after
the data is recorded, reducing the time needed to do some of
the operations when we retrieve the information to present it
to the user. Operations on the same dataset, under the same
keys (for example, the data stored for the same sensor) is much
faster in a hierarchical database since retrieving all previous
data is very fast.

In an hierarchical database the data can either be saved as
separate columns or in the same value with a chosen separator.
This is useful since saving a column to the hierarchical
database is actually an operation. For example, if we want
to save four columns:
• Identifier: an ID or other type of unique identifier;
• Moment: Date-time value of the time the sensor read the

data from the environment;
• Value: Actual data value;

0 200 400 600 800 1000
Number of records x1000

0

2

4

6

8

10

12

ti
m

e 
(s

)

INSERT statement 4 columns with GT.M separately
PostgreSQL
GT.M separately

Fig. 4. INSERT statement 4 columns with GT.M values separately

• Description: Other relevant data that we might want to
save.

We could do it in the form of:
• SensorData(SensorName,Identifier,”Moment”) =

Moment;
• SensorData(SensorName,Identifier,”Value”) = Value;
• SensorData(SensorName,Identifier,”Description”) = De-

scription;
In which case we would have to do three saving operations

on the GT.M table. On the other hand if we would save the
data like this:
• SensorData(SensorName,Identifier) = Mo-

ment—Value—Description;
We would gain a lot of transaction time as it can be seen

in Figures 4 and 5:
As it can be seen in the first Figure, the difference has

dropped significantly between GT.M and PostgreSQL. That is
because even saving the data in the save field with a chosen
separator a little processing of the transaction is required and
an additional if statement is mainly responsible for the big
difference.

To better observe the differences between the two database
engines a test for the ”SELECT” and ”DELETE” queries
has been done with the ”WHERE” clause ”Value¿60.0”. The
results can be seen in Figures 6 and 7:

All the results can be better seen in the below table with
the average improvements of GT.M over PostgreSQL:

V. APPLICATION TO BIG DATA AND DATA MINING

The amount and types of digital data is increasing almost
exponentially comparing with a few years back. All intended
users need advanced data analysis tools and services and
scalable architectures to be able to extract useful information
from big data repositories. Cloud computing systems offer
such support for addressing both the computational and data



0 200 400 600 800 1000
Number of records x1000

0

2

4

6

8

10
tim

e 
(s

)
INSERT statement 4 columns with GT.M together

PostgreSQL
GT.M together

Fig. 5. INSERT statement 4 columns with GT.M values together

0 200 400 600 800 1000
Number of records x1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

tim
e 

(s
)

SELECT statement
PostgreSQL
GT.M

Fig. 6. SELECT statement

TABLE I
ZONES

Operation Average improvement coeficient
Simple INSERT 8.08

INSERT with GT.M stored separately 0.8
INSERT with GT.M stored together 2.55

SELECT 1.16
DELETE 0.53

storage needs of big data mining and parallel knowledge
discovery applications. [9]

0 200 400 600 800 1000
Number of records x1000

0

1

2

3

4

5

6

tim
e 

(s
)

DELETE statement
PostgreSQL
GT.M

Fig. 7. DELETE statement

A. Big data

Big data means looking into information that is already at
your disposal, but looking at it from multiple, different per-
spectives. This gives us the opportunity to understand things
that previously were not even thought of. The concept can
be implemented in multiple domains like banking, financial,
building management systems, marketing, telecommunication,
medical, life science, healthcare, social data and many more.

One implication of big data is that humans, especially
non-scientific people, have a really new and totally different
concept of what the data that is around them every day means.
Where formerly everything was signal, now 99% is noise,
which can lead some to be overwhelmed and make it non-
cost-effective to keep analyzing the said data, especially if the
filter of the information is not adequate. [10]

One important aspect that big data can be used in the domain
of databases which store sensor data is that not only real-
time data is stored, but also a lot of information prior, during
and after a fault in the whole system [11]. With Big Data
techniques we can better understand what went wrong and how
it went wrong by observing all the components of the system.
This brings the advantage of faster locating the challenge since
it could have started in a place we would not think to look in
the beginning.

As [12] states, big data is characterized by 3 Vs: Volume,
Velocity, and Variety. GT.M is a very good candidate to
store information since it can support all these 3 important
characteristics. It can deal with a very big and varied amount
of data in a short period of time.

B. Data mining

Data mining has given impressive results in almost every
domain (e.g. healthcare, wireless sensor networks, social net-
works, etc) with the development of various algorithms. The
first limitation of data mining is that each process needs its



own algorithm. Even though some parts of an algorithm can
be used in others every one has its inherent limitations. The
application domain and the actual data influence very much
the choice as well as the performance of any data mining,
machine learning or statistical algorithm. [13]

Since GT.M is also a compiler for the M language which
was developed once with the database engine and it retrieves
data very fast, algorithms should be implemented in two ways,
both on the system itself and outside in the UI application,
in a general programming language (JAVA, C#) which brings
other challenges [14]. There different types of data mining
algorithms like:
• Classification algorithms: Based on the characteristics of

some already known variables, others can be approxi-
mated;

• Regression algorithms: Based on known data, some con-
tinuous numerical variables, such as profit or loss, can be
predicted;

• Segmentation algorithms: By analysing the data, we can
group different components that have similar properties
into groups, or clusters;

• Association algorithms: Correlations between different
attributes in a dataset can be found with this type of
algorithm.

• Sequence analysis algorithms: summarize frequent se-
quences or episodes in data.

VI. CONCLUSIONS

Using key-value databases to store a large number of sensor
data can be a better option than using a traditional database
if the hierarchical database is well designed since key-value
databases are much better at processing transactions. So, when
it comes of a very big number of nodes, that send a big
quantity of data, multiple times per second, a hierarchical
database is a better option since the commit time is smaller
an aspect that is noticeable when there is a very big number
of elements that want to send and store their data in a cloud
database. GT.M is an open source, high-throughput key-value
database engine optimized for transaction processing. Even if
it has not been used in these kind of scenarios, looking at its
characteristics and advantages it is clearly a good candidate
for a cloud storage system since it is being used with great
success in some of the world’s most important banks, hospitals
and shops. There are still a lot of aspects that need to be
researched by implementing such a system and testing it with
real sensor data. Some of the aspects identified until now are
what types of sensor data can it store with great accuracy, how
easy it is to retrieve the data in an ergonomic manner, what
calculations can be done in the system, since it has an own
language and others.

The next steps that will be taken in investigating the
possibility of using GT.M as a cloud storage engine and
designing a database that will give the opportunity of storing
data from a large number of sensors in the real world are
to use a server accessible from anywhere, install GT.M on
virtual machine with a distribution of Linux on it, create the

necessary interface for clients to be able to insert data and then
query it. Finally, connect the database to a real life building
management system and feed it sensor data in parallel with
other database engines to analyse the results.

Different types of data mining algorithms will have to be
implemented and the results analysed in order to determine
the best choice for different types of applications in GT.M.

An important aspect in data mining is privacy. Since the
great popularity that this domain has started to get in the last
years has also attracted an unwanted attention from people that
might want to exploit the information stored on such cloud
platforms. An emerging research topic in data mining, known
as privacy preserving data mining (PPDM) [15]. In the future,
different aspects of how retrieval of data has to be made in a
way that assures sensitive data is not compromised.

REFERENCES

[1] Andrei Dobrin, Grigore Stamatescu, Cristian Dragana and Valentin Sgar-
ciu, Cloud Challenges for Networked Embedded Systems: a Review,
2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY,
CONTROL AND COMPUTING (ICSTCC), 2016

[2] Carson Kai-Sang Leung, Richard Kyle MacKinnon, Fan Jiang Reducing
the Search Space for Big Data Mining for Interesting Patterns from
Uncertain Data 2014 IEEE International Congress on Big Data, 2014

[3] Joseph S. M. Ho and Ian F. AkyildizDynamic Hierarchical Database
Architecture for Location Management in PCS Networks, EEE/ACM
TRANSACTIONS ON NETWORKING, 1997

[4] Knuth, Donald E.; Saitou, Hiroaki; Nagao, Takahiro; Matui, Shougo;
Matui, Takao; Yamauchi, Hitoshi, The Art of Computer Programming.
- Volume 2, Seminumerical Algorithms

[5] FIS Profile documentation
[6] M. Mutingi, H. Mapfaira, N. P. K. Moakofi, S. A. Moeng, C. Mbohwa

Simulation and Analysis of a Bank Queuing System 2015 Interna-
tional Conference on Industrial Engineering and Operations Management
(IEOM), Dubai, 2015

[7] Chin-Wan Chung and Kenneth E. McCloskey Access to Indexed Hier-
archical Databases Using a Relational Query Language, IEEE TRANS-
ACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1993

[8] Chin-Wan Chung Kenneth E. McCloskey A RELATIONAL QUERY
LANGUAGE INTERFACE TO A HIERABCBICAL DATABASE MAN-
AGEMENT SYSTEM, IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, 1989

[9] Domenico Talia DIMES MakingKnowledge Discovery Services Scalable
on Clouds for Big Data Mining ,University of Calabria & DtoK Lab Srl
Rende (CS), Italy, 2015

[10] Melanie Swan Contemporary Philosophy MA Candidate Philosophy of
Big Data Expanding the Human-Data Relation with Big Data Science
Services 2015 IEEE First International Conference on Big Data Comput-
ing Service and Applications, UK, 2015

[11] Jinxin Huang, Lin Niu, Jie Zhan, Xiaosheng Peng, Junyang Bai, Shijie
Cheng Technical Aspects and Case Study of Big Data based Condition
Monitoring of Power Apparatuses , 2014 IEEE PES Asia-Pacific Power
and Energy Engineering Conference (APPEEC), China, 2014

[12] Kyounghyun Park, Minh Chau Nguyen, Heesun Won Web-based Col-
laborative Big Data Analytics on Big Data as a Service Platform
Big Data SW Research Department, Electronics and Telecommunication
Research Institute, 2015 17th International Conference on Advanced
Communication Technology (ICACT), South Korea, 2015

[13] Archana Purwar and Sandeep Kumar Singh Issues in Data mining:
A comprehensive survey, Department of Computer Science /Information
technology Jaypee Institute of Information Technology, Noida India, 2014

[14] Oana Chenaru, Grigore Stamatescu, Iulia Stamatescu and Dan Popescu,
Towards cloud integration for industrial wireless sensor network systems,
Advanced Topics in Electrical Engineering (ATEE), 2015 9th Interna-
tional Symposium, 2015

[15] Lei Xu, Chunxiao Jiang, Jian Wang, Jian Yuan AND Yong
RenInformation Security in Big Data: Privacy and Data Min-
ing,Department of Electronic Engineering, Tsinghua University, Beijing
100084, China, 2014


	Introduction
	Related work
	Hierarchical databases
	Trees in data structures
	Hierarchical database vs relational database
	Advantages and disadvantages of hierarchical databases
	GT.M

	Results
	Application to big data and data mining
	Big data
	Data mining

	Conclusions
	References

