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Abstract—The paper presents some models based on 
artificial neural networks for particulate matter 
concentration forecasting. A methodology framework is 
proposed for selecting the best forecasting model from a set 
of neural networks models. First, two artificial neural 
network types (feed forward and radial basis) are analyzed 
for forecasting the particulate matter with diameter less 
than 10 µm concentration, based on the proposed 
methodology. Also, a forecasting model for particulate 
matter with diameter less than 2.5 µm is developed, and 
then tested on real time data provided by two air quality 
monitoring microstations built within the ROKIDAIR 
project. In both cases, statistical indicators are calculated in 
order to assess the performance of the forecasting models.  
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I. INTRODUCTION 
Real time air pollution accurate forecasting is a 

difficult problem due to time series data which are usually, 
incomplete, complex and non-linear. Few air quality 
monitoring networks have included real time air pollutants 
forecasting modules [1], the majority of the national ones 
having online warning systems showing the air quality 
index (AQI) and some of them providing alerts (as colored 
codes) related to the exceedances of several air pollutants 
concentration, as well as some general information 
regarding the possible human health impact of more 
severe air pollution episodes [2]. Artificial neural 
networks proved to be good forecasters (see. e.g. [3]-[9]), 
better than the classical methods (e.g. linear regression, 
ARIMA [10]), with a real time response, and therefore, 
we have chosen such a method for particulate matter (PM) 
real time forecasting in urban regions. We focus on PM as 
among the main air pollutants, it has a greater impact on 
children health, especially the respirable PM fractions: 
PM10 and PM2.5, i.e. PM with a diameter smaller than 10 
µm and 2.5 µm, respectively.  

The research work reported in this paper was 
performed under the ROKIDAIR project 
(http://www.rokidair.ro/), which joined under the 
coordination of Valahia University of Targoviste, the 

following partners: Norwegian Institute for Air Research 
(NILU), Petroleum Gas University of Ploiesti, and 
Politehnica University of Bucharest. Under this research 
project, it was developed ROKIDAIR DSS, an intelligent 
decision support system for PM2.5 air pollution 
monitoring, analysis, forecasting and early warning in two 
pilot cities, Ploiesti and Targoviste, with the main goal of 
protecting children health during severe PM2.5 air 
pollution episodes that can occur in the two cities [11]. 
The ROKIDAIR PM2.5 continuous monitoring network is 
composed of microstations that measure apart from the 
PM2.5 concentration, several meteorological parameters 
such as air temperature, relative humidity and atmospheric 
pressure [12]. The microstations were developed by 
Politehnica University of Bucharest. 

The purpose of the research described in this paper 
was to identify an appropriate real time PM2.5 forecasting 
model for ROKIDAIR DSS.  

The paper proposes a methodology framework for 
selecting the best forecasting model from a set of neural 
networks models. First, two ANN types were used: feed 
forward and radial basis, and a comparative study between 
them was performed for PM10 short term forecasting in the 
Ploiesti city. Next, a forecasting model for PM2.5 
concentration is built using data from Ploiesti city and 
then tested on real time data from the above mentioned 
microstations. 

II. THE ANN FORECASTING MODEL DEVELOPMENT 
METHODOLOGY 

Artificial neural networks are nonlinear functions 
universal approximators, inspired from biology that can 
solve forecasting problems in various domains [13]. An 
ANN is composed of interconnected nonlinear processing 
units, named artificial neurons, which are organized under 
a certain topology with several layers between the input 
and the output layer. The links between artificial neurons 
have associated weights, which quantify the degree of the 
connection. Each artificial neuron has an activation 
function (e.g. linear, sigmoid). Several types of ANNs, 
recurrent and non-recurrent were developed so far, 
multilayer perceptron, Hopfield, Kohonen etc. According 



to the research work reported in the literature (see e.g. 
some recent reviews in [1], [5] [14]), the most suitable 
ANN models for air pollution forecasting based on time 
series are feed forward ANN (FF-ANN) and radial basis 
function ANNs (RBF-ANN). A feed forward ANN has an 
input layer, an output layer and zero, one or more hidden 
layers. The neurons outputs of each layer are connected 
with the inputs of the neurons from the next layer, except 
the outputs of the neurons from the output layer. FF-ANN 
training is usually performed with a backpropagation 
algorithm. Fig. 1 shows the structure of a feed forward 
ANN. 
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Figure 1.  The structure of a feed forward artificial neural network 

(m×p×r×n). 

The radial basis function ANN is similar with FF-
ANN, only that every artificial neuron from the hidden 
layers has a “radial basis function” (e.g. a Gaussian 
function) with two parameters: “center” and “width”. An 
RBF-ANN has a number of clusters and a clustering seed 
value which is the starting value for the “center” of the 
clusters. 

The design of an ANN (FF-ANN or RBF-ANN) takes 
into account three fundamental aspects: setting the ANN 
architecture (i.e. number of layers, number of neurons in 
each layer, number of clusters), choosing the right 
activation function for the neurons of each ANN layer, 
and determining the weights of the ANN connections with 
a learning algorithm, during ANN training. 

The architecture of the best PM artificial neural 
network based forecasting model is chosen by experiment 
according to the methodology framework proposed in this 
section. The proper model is selected from a set of models 
built in two steps: (1) it is determined the most appropriate 
time window for the ANN forecasting model based solely 
on PM past measurements and, (2) it is found the most 
influent atmospheric parameter on the PM concentration, 
in the analyzed area, selected from the site specific air 
pollutants and meteorological parameters, which is added 
to the time window found in the first step. 

The database with time series of hourly air pollutants 
concentrations and meteorological parameters 
measurements is provided as the methodology input, 
while the output is the next hour PM concentration value. 
Under the methodology framework, several ANN 
architectures are tested in order to choose the best one. 

Some steps of the methodology are detailed with 
information related to the use of a data mining software 
tool in the implementation phase.   

A. Methodology – PM short term forecasting ANN 
model development 
Inputs: PM and other atmospheric parameters 

measurements - hourly time series data bases 
Output: next hour PM (predicted value) and the best 

ANN forecasting model 
Steps: 

1. Data preprocessing. In this step, the data are processed 
in order to eliminate irrelevant information or noisy data, 
to fill the incomplete records, to normalize or generalize 
the validated values. The database can be rearranged to be 
recognizable by the data mining software tool.    
2. Selection of relevant parameters. The atmospheric 
parameters relevant to PM concentration value prediction 
can be empirically selected using the chemical processes 
experts’ knowledge. They can be determined also by 
experiments using the model’s statistical parameters 
values or some specific data mining techniques, such as 
Principal Components Analysis (PCA), which identifies 
the relevant atmospheric parameters based on the inputs 
and the predicted variables correlations.  
3. Applying the overfitting avoiding method. A common 
solution is to divide the database into three sets: the 
training set, the validation set and the testing set. Another 
option is to use cross-validation with 10 folds. 
4. Setting the ANN architecture. This step involves setting 
the number of nodes in the input layer, 
no_input_variables, (i.e. setting the optimal time window 
for the next hour PM prediction), the number of nodes in 
the hidden layer, no_nodes_hidden_layer (usually, one 
hidden layer is enough for a forecasting ANN model), the 
suitable activation function for the neurons of each layer 
etc. 
5. Training parameters adjustment. The parameters of the 
learning algorithm (i.e. backpropagation) are 
experimentally determined for each type of ANN 
forecasting model: the number of training epochs (Tep), 
the learning rate (LR), the momentum (m) for the FF-ANN 
model, and the number of clusters, the clustering seed 
value (starting value for the "center" of the clusters), for 
the RBF-ANN model, in order to avoid an overtrained or 
undertrained ANN. 
6. ANN training with the parameters set in steps 4 and 5. 
7. Validation of the obtained ANN architecture. 
8. Testing the ANN forecasting model.  
9. ANN forecasting model performance analysis. At this 
stage, the statistical parameters that can be used are the 
correlation coefficient between variables (R2), the mean 
absolute error (MAE), the root mean square error 
(RMSE), the training error (Terr) etc. The parameters can 
be compared with the limits set in the literature by human 
experts or with those obtained by other models designed 
to predict atmospheric parameters value. 
10. Selection of the best ANN forecasting model. 



The best ANN forecasting model is chosen from the 
various forecasting models designed, trained, validated, 
tested and analyzed during steps 4 to 10 of the proposed 
methodology. The forecasting performance of a model is 
measured using a set of statistical parameters. 

The application of the methodology is realized as a 
two steps algorithm following the two cases of a 
forecasting problem formulation [15] which are given 
below. 

The forecasting problem can be solved either as a time 
series problem for one parameter (case I), i.e. only the PM 
concentrations time series, or as a time series problem for 
more parameters (case II) including PM concentration, 
other PM related air pollutants concentrations and 
meteorological parameters. Suppose that x represents the 
PM concentration that needs to be forecasted in a t+k time 
window. Problem formulation for case I is given by (1), 
while for case II is given by (2).   
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where: t is time, p1, p2, … , pm – are parameters that 
influence the evolution of x, t-r is time until are 
considered the previous values, and f1 and f2 are the 
specific forecasting functions. 

As the short term (e.g. next hours) evolution of PM 
concentration can be influenced, apart from the current 
and past values of PM concentrations, by other 
atmospheric factors such as meteorological [16] (e.g. air 
temperature, wind speed, relative humidity) and other air 
pollutants (e.g. CO, SO2, NOx), we have extended the 
application of the methodology framework with a second 
step in which the most influent atmospheric parameter is 
detected and added in the time window of the ANN 
forecasting model. Thus, the two forecasting cases 
formalized by (1) and (2) are integrated in the 
methodology framework, providing a larger set of PM 
forecasting ANN models from which the model with the 
best forecasting performance is chosen. 

B. Methodology framework  
This methodology provides the PM ANN forecasting 

model with the best forecasting performance)  
• step I. Apply the methodology for case I (given by 

(1)) – finding the optimal time window setting for 
the ANN forecasting model dependent only on 
PM time series; provides the best ANN 
forecasting model – I; 

• step II. Apply the methodology for case II (given 
by (2)) – simplified case (one additional 

atmospheric parameter): finding the most influent 
atmospheric parameter (from other air pollutants 
and meteorological parameters) related to PM and 
extend the time window with this one; provides 
the best ANN forecasting model – II; 

• return the best PM ANN forecasting model from 
the two models found in steps I and II. 

Based on the described methodology we have 
developed several PM forecasting models from which the 
best ones were chosen to be used in the ROKIDAIR DSS 
system. 

III. PM10 FORECASTING MODELS 
We have applied the proposed methodology 

framework to the FF-ANN and RBF-ANN forecasting 
models, for PM10 next hour forecasting in the Ploiești city 
at PH-2 monitoring station from the Romania National Air 
Quality Monitoring Network (RNMCA). The 
implementation of the forecasting models was done with 
the WEKA Data Mining software tool 
(http://www.cs.waikato.ac.nz/ml/weka/). In the following, 
details related to the data set and experiments that were 
performed are given. 

A. The data set   
The data set used in the experiments contains time 

series of hourly recorded values for the major atmospheric 
parameters from January 2009 to December 2009 and 
partially from 2011, taken from the National Air Quality 
Monitoring Network web site (http://www.calitateaer.ro). 
The data were gathered at PH-2 monitoring station, 
located in the center of the Ploiesti city. Apart from the air 
pollutants concentrations that are monitored at PH-2 
station, the following meteorological parameters are 
measured: wind direction (degree), wind speed (m/s), 
temperature (⁰C), relative humidity (%), atmospheric 
pressure (mbar), solar radiation (W/m2), precipitations 
(mm). The database had 7641 records, before 
preprocessing. 

B. The FF-ANN PM10 forecasting model  
In this experiment we have followed the proposed 

methodology in order to build an FF-ANN forecasting 
model to predict the next hour PM10 concentration at the 
PH-2 monitoring station, based on the previously 
prepared data set. The proper value for the PM10 time 
window and the most influent atmospheric parameter 
related to PM10 next hour forecast were determined. 

In the first stage different FF-ANNs were built in 
order to determine the optimal architecture for next hour 
PM10 concentration forecasting. Using a time window up 
to 10 hours ago, we have designed several FF-ANNs 
architectures in order to find the optimal number of input 
layer nodes (a number of 10 nodes in the input layer 
reflects that for the forecast are used the past 10 hours 
recorded values of PM10). Thirteen FF-ANNs with 
different number of nodes in the input layer and in the 
hidden layers were built, trained, cross validated and 



tested using the same set of training data and the WEKA 
software tool. Some details on the relevant ANN models 
built during step I of the methodology framework are 
given in Table I. The parameters that were analyzed are: 
Ph – number of past hours, Hn - number of nodes in the 
hidden layer, LR - learning rate, m - momentum, Tep - 
training epochs, Terr - training error, R - correlation 
coefficient, RMSE – root mean squared error, TBM - time 
taken to build the ANN forecasting model.  

TABLE I.  THE FF-ANN EXPERIMENTAL RESULTS – STEP I (TIME 
WINDOW – PAST HOURS) 

Model Ph Hn Terr R RMSE TBM[s]  
FFANN1 10 6 0.0162 0.8515 13.2817 0.47 
FFANN2 9 6 0.0175 0.8518 13.3623 0.43 
FFANN3 8 6 0.0177 0.8661 12.5851 0.41 
FFANN4 7 6 0.0218 0.8686 12.4465 0.37 
FFANN5 6 6 0.0215 0.882 11.8267 0.36 
FFANN6 5 6 0.0257 0.8857 11.5666 0.34 
FFANN7 5 3 0.0300 0.8976 10.9507 0.19 
FFANN8 5 4 0.0244 0.8939 11.1448 0.23 
FFANN9 5 2 0.0352 0.8956 11.0482 0.16 
FFANN10 4 3 0.0298 0.8795 11.8915 0.17 
FFANN11 4 2 0.0506 0.8901 11.3408 0.14 
FFANN12 3 2 0.0411 0.848 13.3842 1.82 
FFANN13 2 1 0.0416 0.8867 11.4946 0.09 

 
The highest correlation of the FF-ANNs architectures 

was provided by FFANN7 (R=0.8976).  
Different tests were performed in order to adjust the 

FF-ANN training parameters for each of the thirteen FF-
ANNs. Fig. 2 shows the best FF-ANN architecture 
identified during step I of the proposed methodology. 

 

 
 

Figure 2.  The best FF-ANN architecture – step I (time window = 5). 

In the second step, in addition to the five input nodes, 
another input node was added, representing the last 5 
hours mean of various atmospheric parameters. The 
purpose of this step was to identify the atmospheric 
parameter that is the most influent to next hour PM10 
concentration forecast along with the past 5 hours 
recorded values for PM10 concentration. Thus, the proper 
FF-ANN architecture after the second step was set to six 

input nodes and one output node. After various tests it 
was determined the proper number of nodes in the hidden 
layer as well as the parameters of the backpropagation 
learning algorithm (LR, m and Tep). The sixth node on 
the input layer represented successively the values 
recorded for different atmospheric parameters, such as: 
sulphur dioxide, nitrogen oxides, carbon monoxide, and 
meteorological parameters (temperature, wind speed, 
relative humidity etc). The experiments performed on the 
PH-2 data set revealed that SO2 was the most influent air 
pollutant and air temperature, relative humidity and wind 
speed were the most influent meteorological parameters 
on PM10 concentration. A selection of experimental 
results is given in Table II.  

TABLE II.  THE FF-ANN EXPERIMENTAL RESULTS – STEP II (MOST 
INFLUENT ATMOSPHERIC PARAMETER) 

 

Parameter Hn Terr R RMSE TBM 
[s] 

SO2 5 0.0224 0.7034 11.6683 0.22 
SO2 3 0,0223 0.6054 13.2098 0.17 
SO2 4 0.0220 0.7026 11.6678 0.2 
NOx 5 0.0254 0.6698 12.2275 0.19 
CO 5 0.0254 0.6698 12.2275 0,19 
Temp 5 0.0250 0.6775 12,0879 0.17 
Rel. Humid. 5 0.0255 0.6434 12.6409 0.19 
Wind Speed 5 0.0251 0.6708 12.1825 0,19 

C. The RBF-ANN PM10 forecasting model  
The second experiment had the same purpose as the 

first one performed with the FF-ANN forecasting model, 
i.e. the next hour PM10 concentration value prediction. In 
this case we have built several RBF-ANN architectures 
that use radial basis function as activation functions. 

The same methodology was followed. Therefore, in 
the first stage, it was determined the optimal time 
window for the past values of PM10 concentration. The 
same approach was used: several RBF-ANN architectures 
with different numbers of input nodes were designed, 
trained, cross validated and tested on the same data set as 
in the first experiment (FF-ANN). The number of input 
layer nodes varied between 2 and 10. The parameters of 
the RBF-ANN forecasting model are the number of 
clusters and the clustering seed value. For our data set, 
these parameters were experimentally set. The 
experimental results obtained for the relevant RBF-ANN 
architectures built during the step I are given in Table III. 

TABLE III.  THE RBF-ANN EXPERIMENTS RESULTS – STEP I (TIME 
WINDOW – PAST HOURS) 

Model  Ph R RMSE TBM [s] 
RBFANN1 10 0.7574 16.5786 0.02 
RBFANN2 9 0.7589 16.1592 0.02 
RBFANN3 8 0.7599 16.1307 0.03 
RBFANN4 7 0.7592 16.1593 0.04 
RBFANN5 6 0.7618 16.0745 0.03 
RBFANN6 5 0.7623 16.0605 0.08 
RBFANN7 4 0.7801 15.5257 0.02 
RBFANN8 3 0.7903 15.2048 0.06 
RBFANN9 2 0.8018 14.8322 0.02 



 
Comparing the values obtained for the statistical 

parameters, the best RBF-ANN architecture was 
RBFANN9, which predicts the next hour PM10 
concentration using the time window of 2 past hours (i.e. 
the values of PM10 concentration measured one hour ago 
and two hours ago), with the correlation coefficient of 
0.8018, and RMSE (14.8322) and the time taken to build 
the model of 0.02 seconds.  

We have performed similar experiments during step II 
with those for the FF-ANN PM10 forecasting model that 
revealed the same atmospheric parameters influence on 
PM10. 

D. Comparative analysis 
We were interested to compare the experimental 

results obtained by the two models, feed forward ANN 
and radial basis function ANN. Table IV synthesized the 
experimental results obtained by the ANN architectures 
with the best performance: FFANN7, FFANN7+ 
(FFANN7 + SO2), RBFANN9, RBFANN9+ (RBFANN9 
+ NOx / CO). The comparative analysis of these 
forecasting models highlights that the FF-ANN 
forecasting model performed better than the RBF-ANN 
forecasting model. The best value for the correlation 
coefficient (0.8976) was obtained by the FFFANN7 
model, a feed forward network that uses in the forecast 
process only the past values of PM10 concentration. The 
same model, FFANN7 obtained the minimum value of 
RMSE (10.9507). 

The main conclusion of the comparative analysis is 
that the best PM10 next hour forecasting results are 
obtained by the FFANN7 model, which uses only the past 
5 hours PM10 concentration values. 

TABLE IV.  THE COMPARATIVE PERFORMANCE ANALYSIS  

Model PM10  
time 

window 

Air 
parameter 

added 

R RMSE TBM 
[s] 

FFANN7 past 5 
hours 

- 0.8976 10.9507 0.19 

FFANN7+ past 5 
hours 

SO2 0.7034 11.6683 0.22 

RBFANN9 past 2 
hours 

- 0.8018 14.8322 0.02 

RBFANN9+ past 2 
hours 

NOx / CO 0.6292 12.684 0.02 

 
At the end of the comparative analysis discussion we 

want to emphasize that our methodological framework 
proposes the selection of the relevant parameters for short 
term PM forecasting with a principal components 
analysis or with a two steps algorithm for obtaining the 
best ANN forecasting model (step I – best time window 
determination; step II – extending the time window with 
the most influent PM related atmospheric parameter) 
which is characterized by optimal statistical parameters 
(as shown by the results of the two experiments, 
described in the previous section and the comparative 

analysis between the best PM10 ANN forecasting 
models). This two steps algorithm represents the main 
contribution of our methodology. These types of 
solutions can be integrated in the proposed methodology 
(for step II – the relevant parameters selection). 

IV. THE PM2.5 FORECASTING MODEL 
The most influent parameters on PM2.5 were identified 

using SAS Enterprise Miner 7.1 Workstation 13.2 
software package. Thus, the best correlations with PM2.5 
concentration were given by relative humidity, 
temperature and atmospheric pressure. 

The data set used in the following experiment is from 
an air quality monitoring station from Ploiesti city, 
Romania, and contains around 6000 samples of hourly 
data for each of the parameters: PM2.5 concentration, 
temperature, relative humidity, and atmospheric pressure. 
The measured ranges for these parameters are:  

• PM2.5: [0.07…51.40] µg/m3;  
• Temperature: [-13.23…37.24] ⁰C; 
• Relative humidity: [11.17…100] %;  
• Atmospheric pressure: [733.66…766.57] mmHg. 
A representation of the evolution of three of the 

mentioned parameters time series is shown in Fig. 3-5.  
 

 
Figure 3.  PM2.5 concentration time series. 

 
Figure 4.  Temperature time series. 

 
Figure 5.  Atmospheric pressure time series. 



The forecasting model is built using MATLAB®, the 
structure of the model being represented in Fig. 6. 
 

 
Figure 6.  PM2.5 forecasting model. 

As it can be seen in Fig. 6, the forecasting model has 
seven inputs, namely: PM2.5 concentration from current 
hour to three hours ago, current hour values for 
temperature, relative humidity and atmospheric pressure. 
The output of the model is the prediction of the next hour 
PM2.5 concentration. 

The neural network based model has the following 
structure: an input layer with seven neurons, one hidden 
layer, and an output layer with one neuron. The type of 
neural network used in this study is feed-forward back 
propagation, the training algorithm is Levenberg-
Marquardt, and the adaptive learning function is the 
gradient descent with momentum weight and bias. The 
structure of the model was modified by changing the 
number of neurons in the hidden layer (from five to 
twelve).    

The performance of the model is evaluated by 
calculating statistical indicators, such as: root mean square 
error (RMSE), index of agreement (IA), and correlation 
coefficient (R).  

The results for this model are presented in Table V. 

TABLE V.  STATISTICAL INDICATORS FOR PM2.5 FORECASTING 
MODEL 

ANN 
structure 

RMSE 
[µg/m3] IA R 

7 x 5 x 1 1.6351 0.9831 0.9668 
7 x 6 x 1 1.6334 0.9831 0.9668 
7 x 7 x 1 1.6028 0.9836 0.9680 
7 x 8 x 1 1.6334 0.9830 0.9668 
7 x 9 x 1 1.6070 0.9836 0.9679 
7 x 10 x 1 1.5990 0.9837 0.9682 
7 x 11 x 1 1.5895 0.9839 0.9686 
7 x 12 x 1 1.6264 0.9832 0.9671 

 
The best results are obtained for the structure with 11 

neurons in the hidden layer, as this structure presents the 
smallest RMSE and the index of agreement and 
correlation coefficient closest to 1.  

For this structure, a representation of a partial view of 
the comparison between testing data and the predicted 
values for the PM2.5 concentration is shown in Fig. 7. 

 
Figure 7.  Partial view of the comparison between testing data and 

predicted values of PM2.5. 

Taking into account the results from Table V and Fig. 
7 it can be considered that the proposed model is validated 
and can be used further in testing data from other air 
quality stations of the same type. 

Thus, the previously validated forecasting model is 
applied on real time data provided by two air quality 
monitoring microstations in Ploiesti city, Romania. The 
microstations are developed within the ROKIDAIR 
research project and measure PM2.5 concentration, 
temperature, relative humidity and atmospheric pressure.  

At each hour, a computer program developed in 
MATLAB® automatically fetch data from the 
microstations databases. These data are necessary for 
testing the forecasting model and refer to the current hour, 
one hour ago, two hours ago, and three hours ago PM2.5 
concentrations, current hour temperature, relative 
humidity and atmospheric pressure. The same program 
applies the forecasting model on these data, thus 
generating the prediction for the next hour PM2.5 
concentration.  

The results obtained by testing the forecasting model 
on data from the two microstations are presented in Fig. 8-
9. 
 

 
Figure 8.  Comparison between real data from Microstation-1 and 

predicted data. 



For Microstation-1 the statistical indicators were: 
RMSE=4.8873 µg/m3, IA=0.9388, and R=0.8878. 
 

 
Figure 9.  Comparison between real data from Microstation-2 and 

predicted data. 

For Microstation-2 the statistical indicators were: 
RMSE=4.9870 µg/m3, IA=0.9400, and R=0.8954. 

The obtained results lead to the idea that the proposed 
PM2.5 forecasting model performs well when tested with 
real time data, other than those used to build the model.  

V. CONCLUSION 
The paper presented some artificial neural network 

based models for real time PM10 and PM2.5 concentration 
forecasting. A methodology framework is proposed for 
particulate matter short term forecasting based on ANN 
having as purpose the selection of the best forecasting 
model from a set of neural networks models. Two PM10 
forecasting model based on two types of ANNs (feed 
forward and radial basis) are analyzed. Also, a PM2.5 
forecasting model was built and tested on real time data 
from two monitoring stations from Ploiesti city developed 
within the ROKIDAIR project. The most appropriate 
PM2.5 forecasting model was integrated in the ROKIDAIR 
DSS and is currently performing real time forecasting in 
two Romanian cities, Ploiesti and Targoviste under the 
ROKIDAIR PM2.5 continuous monitoring network with 
microstations developed at the Politehnica University of 
Bucharest. 
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